
Abstract

The National Center of Computational Sciences (NCCS) and Cray Inc. have embarked on an ag-
gressive program to bring a petascale supercomputer to Oak Ridge National Laboratory (ORNL). The
process involves progressively upgrading its premier Cray XT3 system, code-name Jaguar, in 2006 from
25 teraflops to 50 teraflops and again in 2007 to 119 teraflops. Jaguar will be upgraded once again to
250 teraflops by late 2007. Finally, in late 2008, the center will install a Cray XT3 system, code-named
Baker, with a peak performance of 1 petaflops.

At each stage along the way, the new systems must undergo acceptance testing to ensure they are
capable of performing the computational and operational tasks for which they were designed. The
acceptance testing involves both hardware and software tests and is used to demonstrate usability after
each upgrade.

This paper provides a brief description of the applications for the software test and detailed discussion
of the process for automating the tests themselves. The tests are orchestrated by a ‘test harness’ which
has framework that initializes the submission of the jobs to the system, provides a means for stopping
and starting running tests, coordinates the collection of application results, and provides a means of
checking the pass rate of tests.

1

An Overview of NCCS XT3/4 Acceptance Testing

Arnold Tharrington

May 18, 2007

1 Introduction

The National Center of Computational Sciences
(NCCS) and Cray Inc. have embarked on an aggres-
sive program to bring a petascale supercomputer to
Oak Ridge National Laboratory (ORNL). In 2005
a 25 teraflop (TF) Cray XT3 system, code-named
Jaguar, was installed. In 2006, Jaguar was upgraded
to 50 TF. In early 2007 Jaguar was upgraded to 119
TF. At the end of 2007 Jaguar will be upgraded to
250 TF. In 2008 a 1 petaflop (PF) system will be
installed.

Each system undergoes acceptance testing, des-
ignated as Jaguar Acceptance Testing (JAT), to
demonstrate its usability. The document ORNL
NLCF Acceptance Test Plan explicitly states the re-
quirements for accepting each system. The ORNL
Cray Technical Representative (CTR) is the judge of
whether or not the requirements of JAT have been
met.

The acceptance testing for each system has two
parts. The first part is the initial hardware accep-
tance and is designated as Jaguar Acceptance Test
Hardware (JAT-HW). The hardware testing checks
the processors, memory, and interconnects. This
test is performed on a cabinet-by-cabinet basis at
ORNL by Cray Personnel and is witnessed by ORNL
Staff.

The second part is designated as Jaguar Accep-
tance Test Final Integration (JAT-FI). JAT-FI con-
sists of 3 parts performed in the following order:
functionality, performance, and stability. The func-
tionality part, designated as Jaguar Acceptance Test
Functionality (JAT-FT), verifies the readiness of key
systems (file systems, batch scheduler, etc.), libraries
(fftw, hdf5, petsc, etc.), and code development ser-
vices (compilers, debuggers, etc.). The performance
test verifies the performance and scalability of the
system. The stability part verifies the stability of the
system under a simulated workload of code devel-

opment and production simulations for a sustained
length of time.

The JAT-FI has several operational requirements
that create demanding logistical execution barriers.
One such requirement is that the CTR mandates
there be 1 point of contact for running the JAT-FI
parts. Another requirement is that all test results
within the JAT-FI must be collected, archived, and
communicated to the ORNL CTR for evaluation.
The JAT-FI also requires the software applications
be submitted in such a manner that the machine
stays busy during each part of the JAT-FI. Moreover
the stability test requires the pass rate for all com-
bined software application be at least 95%, and all
individual software applications must have at least
1 pass. This necessitates frequent periodic monitor-
ing of the results of all the stability test applications.
These logistical execution barriers were overcome by
the use a test harness that automated the JAT-FI
parts.

This paper is organized as follows. Section 2
presents the hardware configuration, key acceptance
requirements, and software tests for each system.
Section 3 presents the NCCS Test Harness, section
4 presents the future direction of the ORNL NLCF
test applications and harness, and section 5 presents
the conclusions.

2 System Tests and Require-
ments

Each system has a hardware environment that un-
dergoes the JAT-HW and JAT-FI tests. The JAT-
HW environment for the 50 TF, 100 TF, 250 TF,
and 1 PF systems is respectively shown in Tables 1,
3, 5, and 7. The JAT-FI applications and libraries
for the 50 TF, 100 TF, 250 TF and 1 PF systems
are respectively shown in Tables 2, 4, 6, and 8. We
limit our discussion to the JAT-FI part of which the

2

functionality, performance, and stability parts each
have entry and exit requirements. Figure 1 gives an
overview of the JAT for each system.

2.1 Functionality Test

The purpose of the functionality test is to ensure
the system can perform the performance and stabil-
ity test. The Functionality test entry requirement
consists of the following:

1. Removal of any non-standard software and a
complete listing of all software installed on the
system

2. A successful build of JAT test components

A few important functionality test exit criteria
are the following:

1. Continuous running of the functionality test
for 12 hours without generating severity 1 or 2
defects

2. No obvious performance problems are de-
tected, including job launch and exit

3. All deviations or limitations observed during
JAT-FT deemed essential to ORNL to con-
ducting the JAT-PT and JAT-ST are fixed by
Cray

2.2 Performance

The purpose of the performance test is to ensure and
fix any problems that would interfere with the per-
formance of the stability test. The performance test
entry requirements are the following:

1. Successful completion of the JAT-FT exit cri-
teria

2. Remove any non-standard software installa-
tions (sandbox builds, personal fixes, patches,
etc.) and install only released software from
Cray

3. Provide a complete listing of all installed soft-
ware, including patch level and any released
patches to ORNL

A few important performance test exit criteria
are the following:

1. Continuous running of the JAT-PT for 12
hours without generating any severity 1 or 2
defects

2. Successfully pass each of the performance mea-
sures

3. Successfully run the full range of problem sizes
for each application code

4. Document the performance and scalability re-
sults obtained during the JAT-PT

2.3 Stability

The purpose of the stability test is to ensure the
system is ready to assume a production workload
environment. The stability test entry requirement
consists of the following:

1. Successfully complete the JAT-PT exit criteria

2. Remove any non-standard software installa-
tions (sandbox builds, personal fixes, patches,
etc.) and install only released software from
Cray

3. Provide a complete listing of all installed soft-
ware, including patch level and any released
patches to ORNL

4. Negotiated performance metrics of the appli-
cation tests are met and documented and in-
tegrated into the test harness for the stability
test

A few of the stability test exit requirement con-
sists of the following:

1. All applications run in the JAT-ST have ex-
hibited the required number of days of hard-
ware and software stability without generating
severity 1 or 2 defects

2. Successfully demonstrate the reliability re-
quirements of 95% job completion and 100%
correct answers of all completed jobs

3. All application tests consistently run at near
the negotiated performance levels during the
entire stability test

4. Successfully run the full range of problem sizes
for each application code

5. There are no unexplained job terminations

3

3 NCCS Test Harness

The NCCS Test Harness is a Python software pack-
age that was created to overcome the logistical
barriers of managing the numerous jobs from run-
ning the applications and their associated tests dur-
ing the JAT-FI parts. The test harness models a
build/compile and run through batch work environ-
ment. Typically, a JAT-FI part has between 50 and
100 tests to be concurrently run for long sustained
times. Therefore, it is critical to frequently monitor
the results and intervene as soon as possible if any
problems are detected.

In addition, the JAT-FI runs generate approx-
imately tens of terabytes of data which must be
archived for future audits. Because of the tight ac-
ceptance schedule it impractical to archive at the
end of the JAT-FI. The only recourse is to archive
during the JAT-FI parts.

Finally, the logistical execution barriers are fur-
ther exacerbated by the requirement that there be 1
person managing the numerous tests.

3.1 Overall Harness Design and Op-
eration

Figure 2 shows a conceptual depiction of the test
harness. The test harness has 2 parts:

1. The harness driver

2. The SVN repository containing the applica-
tions and their associated tests

The test harness, through the harness driver, can
check out an application with its tests from the SVN
repository, start the tests, stop the tests, and calcu-
late the percentage of passed tests. The test harness
is operated by making the appropriate input files,
setting the appropriate environmental variables, and
executing the harness command ‘runtests.py’.

Figure 3 is a depiction of the general overview
of the harness in operation. The harness input
file is created and some environmental variables
are set by the user. The input file is located at
‘path a/〈harness input files〉/’. The purpose of the
harness input file is to select which tests are to
be run, and set the checkout location of the tests.
The tests are checked out to ‘path b/〈checked out
apps〉/’. For each test run instance, the harness
will make a unique workspace located within the di-
rectory ‘path c/〈checked out apps workspace〉/’ of
which it is optional, but highly advisable for the

test in question to use. Note that all of the tests
for the XT3 acceptance used this unique workspace
to prevent concurrent runs of the same tests from
clobbering each other results.

3.1.1 Harness Driver Input File

The harness driver has 1 input file named ‘rgt.input’
of which an example is shown in Figure 4. Blank
records and records starting with ‘#’ are ignored.
The input file can be logically organized into 3 sec-
tions. The first section specifies the path to the lo-
cation where the applications and tests are checked
out from the SVN repository. This is specified by
the record starting with ‘Path to tests’. This path
must be any valid path that the user has r, w,and x
permission.

The second section specifies the applications and
tests to be run. The records starting with ‘Test’
specifies an application and test. An single test con-
sist of specifying the application and one of the sub-
tests of the application. Any number of tests can be
run.

The third section specifies the action to be per-
formed on the tests. The records starting with ‘Har-
ness tasks’ specify a task. Only one tasks at a time
can be performed for a given number of tests. For
our input file, simply uncomment a harness task.

3.1.2 Harness Environmental Variables

The environmental variables are defined by sourc-
ing the configuration file shown in Figure 5, and
loading the nccs test harness/0.2 module. An
important environmental variable definition is
RGT PATH TO SSPACE. This variable defines the
root location of where the tests are build and run.
Note the build and run location are distinct from the
path where the applications are checked out to.

3.1.3 Applications/Tests and SVN Reposi-
tory

Figure 6 shows the layout of an application and
test within the SVN repository. An single test is
is created by creating the build executable.x, sub-
mit executable.x, and check executable.x scripts.

3.1.3.1 build script The build script command
line interface is

build_executable.x -i uniqueid -p location

4

where ‘uniqueid’ is the time from epoch.
This is calculated the harness driver for each
run instance of a test. The ‘location’ is the
unique path and generally has a form similar to
‘path c/〈checked out apps workspace〉/〈application
name〉/〈test〉/〈uniqueid〉’ The function of the build
script is to build the binary for running the test.
Note that some test may not require a binary to be
built. The build script only mandatory requirement
is that it return one the following values:

1. 0 for a successful build

2. 1 for an unsuccessful build

3. ≥ 2 for an undetermined build

3.1.3.2 submit script The submit script com-
mand line interface is

submit_executable.x -i uniqueid -p location

The purpose of the submit script is to launch the test
through the batch queue. The requirements of the
submit script is that it returns one following values:

1. 0 for a successful launch

2. 1 for an unsuccessful launch

3. ≥ 2 for an undetermined launch

and that the batch script it launches has the follow-
ing commands executed last:

check_executable_driver.py -i uniqueid
(contd) -p location

test_harness_driver.py -r

The command check executable driver.py will
call the check executable.x. The command
test harness driver.py will start a new instance of
the test.

3.1.3.3 check script The check script com-
mand line interface is

check_executable.x -i uniqueid -p location

The purpose of the check script is to check the re-
sults of the test. The only requirement of the check
script is that it returns one following values:

1. 0 for a successful test.

2. 1 for an unsuccessful test

3. ≥ 2 for an undetermined test

3.1.4 Requirements of Interactions between
Applications/Tests Scripts

As previously stated the harness driver will check
out the application and tests to ‘path b/〈checked
out apps〉/’. Figure 7 shows a detail depiction
of the layout of an checked out application and
test. For each instance of a test, the directo-
ries Run Archive/〈ID〉 and Status/〈ID〉 will be cre-
ated. The Run Archive/〈ID〉 directory respectively
store the critical files for archiving. The directory
Status/〈ID〉 contains a file named ‘status.txt’ that
stores the result of the check executable.x script.
The scripts build executable.x, submit executable.x,
and check executable.x scripts will be run from the
Scripts directory. One should note that these scripts
must be written in a manner that does not depend
upon their absolute location but only upon the rela-
tive paths of the other directories and files within a
test. During a run, the cumulative results of a test
is stored in the file ‘Status/rgt status.txt’.

4 Future Direction

Although the test harness is robust, it has a need
of few improvements. One need is for better error
recovery and restart functionality. For example, the
harness moves and copies much data during a run
and sometimes tests exceed their batch wall time
due to the high load on the files system. These tests
will stop and must be restarted by a tedious manual
process.

Secondly, the harness needs a more robust set
of tests. We have a very limited set of intrinsic
hardware tests. We are currently collaborating with
other High Performance Computing (HPC) centers
to expand our set.

Finally, the harness is not completely portable
to other UNIX shells. The harness was written us-
ing a BASH shell. However, the user environment
is not the same for all UNIX shells on Jaguar (the
XT3). This causes problems when other users wish
to operate the harness.

5

5 Conclusions

The NCCS Test Harness is a robust software frame-
work to manage a large number tests. A single user
can typically startup all tests (≈ 100) in our harness
suite in 2 hours. Thereafter, periodic checking on
the tests generally occurs every 6-8 hours.

Their are minimal requirements on users adding
new applications and tests which permits very fast
and allows integration of numerous types of test.
There are sample tests that are easily adaptable
for new tests. One example of the variety of tests
that can be integrated into the harness is the CCSM
smoke test. CCSM has a complicated build proce-
dure which was managed to be integrated, with some
difficulty, in our harness.

Lastly, the harness is very extendible. It is writ-
ten in Python with extensive use of object-oriented
design. Nearly all major data-structures are classes.
For example, the directory layout of an application
is a class. This permits an easy modification, manip-
ulation, or generation of key paths in the directory
layout.

6

Type Quantity
Compute Nodes 5,212 AMD

Opteron Dual-
Core Processors

Compute
Threads

10,424

Memory per
Node

2 GB

Global Disk
Space

120 TB

Global Disk
Bandwidth

14 GB/s

External Net-
work I/O
connections

1 Gb/s Ether-
net x 38 and 10
Gb/s Ethernet x
2

Login Nodes 8

Table 1: 50 TF hardware configuration

7

Sustained
Time

Requirements Applications

Functionality 24 hrs Each test must have at
least 1 pass

Intel MPI Benchmarks,
MPICH Test Suite,
FFTW2, FFTW3, HDF5,
CCSM, NetCDF, Petsc,
Scalapack, Kickstart

Performance 24 hrs Each test must have at
least 1 pass, Meet per-
formance criteria require-
ments of contract

Intel MPI Benchmarks,
MPICH Test Suite,
Presta MPI Bandwidth
and Latency Bench-
mark, FFTW2, FFTW3,
CCSM, NetCDF, Petsc,
Scalapack, LSMS, VH1,
GTC, S3D, POP

Stability 72 hrs Each test must have at
least 1 pass, Combined
pass rate of 95%

Intel MPI Benchmarks,
MPICH Test Suite, Presta
MPI Bandwidth and La-
tency Benchmark, Kick-
start, LSMS, VH1, GTC,
S3D, POP

Table 2: 50 TF applications and libraries configuration

Type Quantity
Compute Nodes 6,296 AMD

Opteron Dual-
Core Processors

Compute
Threads

12,592

Memory per
Node

2 GB

Global Disk
Space

767 TB

Global Disk
Bandwidth

41 GB/s

External Net-
work I/O
connections

1 Gb/s Ether-
net x 38 and 10
Gb/s Ethernet x
2

Login Nodes 20

Table 3: 100 TF hardware configuration

8

Sustained
Time

Requirements Applications

Functionality 24 hrs Each test must have at
least 1 pass

Intel MPI Benchmarks,
MPICH Test Suite,
FFTW2, FFTW3, HDF5,
CCSM, NetCDF, Petsc,
Scalapack, Kickstart

Performance 24 hrs Each test must have at
least 1 pass, Meet per-
formance criteria require-
ments of contract

Intel MPI Benchmarks,
MPICH Test Suite,
Presta MPI Bandwidth
and Latency Bench-
mark, FFTW2, FFTW3,
CCSM, NetCDF, Petsc,
Scalapack, LSMS, VH1,
GTC, S3D, POP

Stability 72 hrs Each test must have at
least 1 pass, Combined
pass rate of 95%

Intel MPI Benchmarks,
MPICH Test Suite, Presta
MPI Bandwidth and La-
tency Benchmark, Kick-
start, LSMS, VH1, GTC,
S3D, POP

Table 4: 100 TF applications and libraries configuration

Type Quantity
Compute Nodes 6,296 AMD

Opteron Quad-
Core Processors

Compute
Threads

25,184

Memory per
Node

8 GB

Global Disk
Space

767 TB

Global Disk
Bandwidth

41 GB/s

External Net-
work I/O
connections

1 Gb/s Ether-
net x 38 and 10
Gb/s Ethernet x
2

Login Nodes 20

Table 5: 250 TF hardware configuration

9

Sustained
Time

Requirements Applications

Functionality 24 hrs Each test must have at
least 1 pass

Intel MPI Benchmarks,
MPICH Test Suite,
FFTW2, FFTW3, HDF5,
CCSM, NetCDF, Petsc,
Scalapack, Kickstart,
Global Arrays

Performance 24 hrs Each test must have at
least 1 pass, Meet per-
formance criteria require-
ments of contract

Intel MPI Benchmarks,
MPICH Test Suite,
Presta MPI Bandwidth
and Latency Bench-
mark, FFTW2, FFTW3,
CCSM, NetCDF, Petsc,
Scalapack, LSMS,
VH1, GTC, S3D, POP,
AORSA,Global Arrays

Stability 72 hrs Each test must have at
least 1 pass, Combined
pass rate of 95%

Intel MPI Benchmarks,
MPICH Test Suite, Presta
MPI Bandwidth and La-
tency Benchmark, Kick-
start, LSMS, VH1, GTC,
S3D, POP, AORSA

Table 6: 250 TF application and libraries configuration

Type Quantity
Compute Nodes 22,400 AMD

Opteron Quad-
Core Processors

Compute
Threads

89,600

Memory per
Node

8 or 16 GB

Global Disk
Space

5 to 15 PB

Global Disk
Bandwidth

240 GB/s

External Net-
work I/O
connections

1 Gb/s Ether-
net x 20 and 10
Gb/s Ethernet x
2

Login Nodes 20

Table 7: 1 PF hardware configuration

10

Sustained
Time

Requirements Applications

Functionality 24 hrs Each test must have at
least 1 pass

Intel MPI Benchmarks,
MPICH Test Suite,
FFTW2, FFTW3, HDF5,
CCSM, NetCDF, Petsc,
Scalapack, Kickstart,
Global Arrays

Performance 24 hrs Each test must have at
least 1 pass, Meet per-
formance criteria require-
ments of contract

Intel MPI Benchmarks,
MPICH Test Suite,
Presta MPI Bandwidth
and Latency Benchmark,
FFTW2, FFTW3, CCSM,
NetCDF, Petsc, Scala-
pack, LSMS, VH1, GTC,
S3D, POP, NWChem,
AORSA

Stability 72 hrs Each test must have at
least 1 pass, Combined
pass rate of 95%

Intel MPI Benchmarks,
MPICH Test Suite,
Presta MPI Bandwidth
and Latency Bench-
mark, Kickstart, LSMS,
VH1, GTC, S3D, POP,
NWChem, AORSA

Table 8: 1 PF application and libraries configuration

11

JAT

JAT-HW JAT-FI

JA
T-F
T

JA
T-P
T

JA
T-S
T

Figure 1: An overview of the JAT for each system or hardware environment. The JAT has 2 parts: the
JAT-HW which is the initial hardware acceptance, and the JAT-FI which is the final integration. The JAT-
FI contains 3 parts which are the functionality, performance, and stability tests. The arrow symbolizes the
order in time the parts are performed

12

Test 3

Test 2

Test 1

Source Source

Test 3

Test 2

Test 1

SVN Repository

Harness Driver

Application BApplication A

Figure 2: An overview of the harness design. The harness can be logically partitioned into 2 major parts-the
Harness Driver and the SVN repository. The Harness driver operates or runs the checked out applications
and tests from the SVN repository.

13

Jaguar
Computer

Login Node

Applications in
subversion repository server

/path_b/<checked out apps>

/path_c/<checked out apps workspace>

/path_a/<harness input files>

Figure 3: An overview of the directory layout of the applications during a test instance. The dotted line
shows the initial checkout of the application and test from the SVN repository. Note the location where the
applications and tests are checked out to are distinct form the build and run location.

14

##
Set the path to the top level of the application directory.
#
##
Path_to_tests = /lustre/scr144/arnoldt/trial_applications_6

##
Name of Applications Name of Tests
#
##
Test = IMB_v2.3 Dual_Core_4096_Sockets

##
Name of Applications Name of Tests
#
##
Test = GTC Dual_Core_4096_Sockets
Test = GTC Dual_Core_8192_Sockets

##
Name of Applications Name of Tests
#
##
Test = MPICH-test_v1.1 Test1

##
The task the harness can perform on the tests.
#
Simply uncomment the appropiate tasks(s).
##

###
Checks of the test from the SVN repository.
###
#Harness_task = check_out_tests

##
Starts the test
##
#Harness_task = start_tests

##
Display the status of the tests.
##
#Harness_task = display_status

###
Stops the tests.
###
#Harness_task = stop_tests

Figure 4: A harness input file.

15

#! /usr/bin/env bash

#
Author: Arnold Tharrington
Email: arnoldt@ornl.gov
National Center of Computational Science, Scientifc Computing Group.
#

#
This file defines and sets user specific environmental variables for the test
harness.
#

Add or modify as needed to suit your environment.

#---
Absoulte path to scratch space location. -
#---
RGT_PATH_TO_SSPACE=’/lustre/scr144/arnoldt/trial_scratch_6’
export RGT_PATH_TO_SSPACE

#---
PBS job account id. -
#---
RGT_PBS_JOB_ACCNT_ID=’stf006bf’
export RGT_PBS_JOB_ACCNT_ID

#---
Set the path to this file -
#---
RGT_ENVIRONMENTAL_FILE=’/spin/home/arnoldt/rgt_environmental_variables.bash.x’
export RGT_ENVIRONMENTAL_FILE

#---
Name of nccs test harness module to load -
#---
RGT_NCCS_TEST_HARNESS_MODULE=’nccs_test_harness/0.2’
export RGT_NCCS_TEST_HARNESS_MODULE

Figure 5: A harness environmental definition file. This file is sourced to set critical harness environmental
variables.

16

/path_to_svn/<app>

TestM/

Source/

application_info.txt

Scripts/

test_info.txt

check_executable.x

build_executable.x

submit_executable.x

Correct_Results/

Figure 6: An overview of an application layout in subversion repository for TestM. The directory Source
contains the source code for the application. The directory Correct Results contains the valid results for
the test. The Scripts directory contains the build, submit, and check scripts for the test which are the only
mandatory files.

17

/path_b/<app>

TestM/

Source/

Scripts/

Run_Archive/<ID>
check_executable.x

build_executable.x

submit_executable.x

Correct_Results/

Status/<ID>

Figure 7: An overview of the directory layout of an application and test during a test instance. For each test
instance the harness driver generates a unique id, ID, which is the time from epoch. The id is used to make
the directories Run Archive/〈ID〉, and Status/〈ID〉 respectively contain the critical files to be archived and
the results of the test instance.

18

